
Generating Useful Data with 
Computer Vision Tools:

2 Use Cases (PDFs & Imagery)

Erik Neemann
10 May 2023

gis.utah.govgis.utah.gov/presentations

http://gis.utah.gov
http://gis.utah.gov/presentations


Overview

● Two Computer Vision (CV) Projects
○ UDOT Parcel Detection Project
○ DHHS Cooling Towers Project

● Motivation
● Process
● Details/Tools
● Results

gis.utah.gov

http://gis.utah.gov


Motivation - UDOT Parcel Detection
● UDOT has acquired a LOT of property over 

100+ years
○ ...but they didn't keep track of where that 

property was located
● UDOT has a tons (90K) of project plan 

documents
○ …but it's difficult to find a specific parcel 

within those documents
● How can they untangle where everything is?

○ Manually sift through 90,000 documents?
■ NO!

○ Let the machines do the work!
UDOT ROW Parcels

https://uplan.maps.arcgis.com/apps/webappviewer/index.html?id=0be05e11731e45c68d375536f9588c17


Motivation - UDOT Parcel Detection
● Parcel information is annotated in a very 

specific way - circles around the text
● Plan documents fairly consistent in format
● Circles take up roughly the same size in any 

given document
● Parcel text follows patterns, w/ defined rules

○ numbers/letters, colon, numbers/letters
○ 193B:2A
○ 191:E
○ 41BNT:2E

gis.utah.gov

http://gis.utah.gov


● Parcel information is annotated in a very 
specific way - circles around the text

● Plan documents fairly consistent in format
● Circles take up roughly the same size in any 

given document
● Parcel text follows patterns, w/ defined rules

○ numbers/letters, colon, numbers/letters
○ 193B:2A
○ 191:E
○ 41BNT:2E

Motivation - UDOT Parcel Detection

gis.utah.gov

This problem is 
solvable with 

computer vision!

http://gis.utah.gov


Examples

gis.utah.gov

http://gis.utah.gov


Examples

gis.utah.gov

http://gis.utah.gov


Examples

gis.utah.gov

http://gis.utah.gov


Examples

gis.utah.gov

http://gis.utah.gov


Examples

gis.utah.gov

http://gis.utah.gov


● Various file types (documents, images, 
other files)

● Images vary in format and file type
● Images vary in size, resolution, DPI
● Images vary in font style (typed, 

handwritten, different typed fonts)
● Images vary in orientation
● Images vary in quality, noise, 

consistency

UDOT Parcels - Challenges
● UDOT completed a bulk export of files from their project 

software into Google Cloud Storage
○ …but many files are not relevant!

gis.utah.govgis.utah.gov

http://gis.utah.gov
http://gis.utah.gov


Examples

gis.utah.gov

http://gis.utah.gov


gis.utah.gov

http://gis.utah.gov


gis.utah.gov

http://gis.utah.gov




● Various file types (documents, images, 
other files)

● Images vary in format and file type
● Images vary in size, resolution, DPI
● Images vary in font style (typed, 

handwritten, different typed fonts)
● Images vary in orientation
● Images vary in quality, noise, 

consistency

UDOT Parcels - Challenges
● UDOT completed a bulk export of files from their project 

software into Google Cloud Storage
○ …but many files are not relevant!

gis.utah.govgis.utah.gov

http://gis.utah.gov
http://gis.utah.gov


UDOT Parcels - Process Overview
● 1) Initial file processing
● 2) Detect circles and build mosaic images
● 3) Detect text
● 4) Combine results
● 5) Post-process results

gis.utah.govgis.utah.gov

                       
2

3 4/5

Original File
Mosaic

JSON

Spread
sheet

http://gis.utah.gov
http://gis.utah.gov


Step 1 - Initial File Processing 
● About 90K objects in cloud storage bucket
● Several files were irrelevant and discarded (.xlsx, .doc, others) 
● Many files types to deal with

○ ~46K PDF Documents (.pdf)
○ ~42K images (.tif, .jpg)

● Convert PDFs to images
○ Multipage PDFs to multiple images

gis.utah.govgis.utah.gov

http://gis.utah.gov
http://gis.utah.gov


Step 2 - Detect Circles
● Image preprocessing to improve circle detection

○ Convert to grayscale
○ Add slight blur

● Detect Circles
○ Assume circle radius ~2.5% of image width

■ Iterate through up to 6 values (smaller, bigger, smaller, etc.)
■ Stop when 1-100 circles are found

● Build Mosaics
○ Crop out square around detected circle
○ Mask out area outside circle
○ Inset the mask to remove circle outline
○ Stitch together all cropped squares into a mosaic

● Upload to Google Cloud Storage
● 10,000(!) worker tasks running in parallel in Google Cloud Run

○ 2.5 run of 10K or 25K, each took about 3 minutes = 75,000 minutes of processing
○ 52 days or 7.4 weeks of processing time completed in less than 4 hours!!!!! gis.utah.govgis.utah.gov

Grayscale & Blur

http://gis.utah.gov
http://gis.utah.gov


Step 2 - Detect Circles
● Image preprocessing to improve circle detection

○ Convert to grayscale
○ Add slight blur

● Detect Circles
○ Assume circle radius ~2.5% of image width

■ Iterate through up to 6 values (smaller, bigger, smaller, etc.)
■ Stop when 1-100 circles are found

● Build Mosaics
○ Crop out square around detected circle
○ Mask out area outside circle
○ Inset the mask to remove circle outline
○ Stitch together all cropped squares into a mosaic

● Upload to Google Cloud Storage
● 10,000(!) worker tasks running in parallel in Google Cloud Run

○ 2.5 run of 10K or 25K, each took about 3 minutes = 75,000 minutes of processing
○ 52 days or 7.4 weeks of processing time completed in less than 4 hours!!!!! gis.utah.govgis.utah.gov

Iterate Through 
Radius Sizes

radius too small

http://gis.utah.gov
http://gis.utah.gov


Step 2 - Detect Circles
● Image preprocessing to improve circle detection

○ Convert to grayscale
○ Add slight blur

● Detect Circles
○ Assume circle radius ~2.5% of image width

■ Iterate through up to 6 values (smaller, bigger, smaller, etc.)
■ Stop when 1-100 circles are found

● Build Mosaics
○ Crop out square around detected circle
○ Mask out area outside circle
○ Inset the mask to remove circle outline
○ Stitch together all cropped squares into a mosaic

● Upload to Google Cloud Storage
● 10,000(!) worker tasks running in parallel in Google Cloud Run

○ 2.5 run of 10K or 25K, each took about 3 minutes = 75,000 minutes of processing
○ 52 days or 7.4 weeks of processing time completed in less than 4 hours!!!!! gis.utah.govgis.utah.gov

Iterate Through 
Radius Sizes

radius too big

http://gis.utah.gov
http://gis.utah.gov


Step 2 - Detect Circles
● Image preprocessing to improve circle detection

○ Convert to grayscale
○ Add slight blur

● Detect Circles
○ Assume circle radius ~2.5% of image width

■ Iterate through up to 6 values (smaller, bigger, smaller, etc.)
■ Stop when 1-100 circles are found

● Build Mosaics
○ Crop out square around detected circle
○ Mask out area outside circle
○ Inset the mask to remove circle outline
○ Stitch together all cropped squares into a mosaic

● Upload to Google Cloud Storage
● 10,000(!) worker tasks running in parallel in Google Cloud Run

○ 2.5 run of 10K or 25K, each took about 3 minutes = 75,000 minutes of processing
○ 52 days or 7.4 weeks of processing time completed in less than 4 hours!!!!! gis.utah.govgis.utah.gov

Crop & Mask 
(original image)

radius just right

Goldilocks Zone

http://gis.utah.gov
http://gis.utah.gov


Step 2 - Detect Circles
● Image preprocessing to improve circle detection

○ Convert to grayscale
○ Add slight blur

● Detect Circles
○ Assume circle radius ~2.5% of image width

■ Iterate through up to 6 values (smaller, bigger, smaller, etc.)
■ Stop when 1-100 circles are found

● Build Mosaics
○ Crop out square around detected circle
○ Mask out area outside circle
○ Inset the mask to remove circle outline
○ Stitch together all cropped squares into a mosaic

● Upload to Google Cloud Storage
● 10,000(!) worker tasks running in parallel in Google Cloud Run

○ 2.5 run of 10K or 25K, each took about 3 minutes = 75,000 minutes of processing
○ 52 days or 7.4 weeks of processing time completed in less than 4 hours!!!!! gis.utah.govgis.utah.gov

Crop & Mask 
(original image)

http://gis.utah.gov
http://gis.utah.gov


                       

Build Mosaic

Step 2 - Detect Circles



Build Mosaic -  Extreme Example



Step 2 - Detect Circles
● Image preprocessing to improve circle detection

○ Convert to grayscale
○ Add slight blur

● Detect Circles
○ Assume circle radius ~2.5% of image width

■ Iterate through up to 6 values (smaller, bigger, smaller, etc.)
■ Stop when 1-100 circles are found

● Build Mosaics
○ Crop out square around detected circle
○ Mask out area outside circle
○ Inset the mask to remove circle outline
○ Stitch together all cropped squares into a mosaic

● Upload to Google Cloud Storage
● 10,000(!) worker tasks running in parallel in Google Cloud Run

○ 2.5 run of 10K or 25K, each took about 3 minutes = 75,000 minutes of processing
○ 52 days or 7.4 weeks of processing time completed in less than 4 hours!!!!! gis.utah.govgis.utah.gov

Crop & Mask 
(original image)

http://gis.utah.gov
http://gis.utah.gov


Step 3 - Detect Text
● Google Document AI tool used 

to perform Optical Character 
Recognition (OCR) on each 
mosaic file

○ API extracts text and other 
metrics, returns a JSON file with 
results

● Basic cleanup on JSON text 
string

○ Remove newlines, whitespace, 
empty text results

● Insert results into a dataframe, 
with filename

● Save dataframe as a CSV

https://cloud.google.com/document-ai/docs/drag-and-drop


Step 3 - Detect Text
● Google Document AI tool used 

to perform Optical Character 
Recognition (OCR) on each 
mosaic file

○ API extracts text and other 
metrics, returns a JSON file with 
results

● Basic cleanup on JSON text 
string

○ Remove newlines, whitespace, 
empty text results

● Insert results into a dataframe, 
with filename

● Save dataframe as a CSV

https://cloud.google.com/document-ai/docs/drag-and-drop


Step 4 - Combine Results
● Combine all result dataframes into a single dataframe (concatenate)
● Join additional fields from UDOT spreadsheets on filename field

○ project_number
○ project_name
○ guid from project management system (ProjectWise)

● Build URLs to ProjectWise, Cloud Storage files
● Explode text into multiple rows

gis.utah.govgis.utah.gov

 

http://gis.utah.gov
http://gis.utah.gov


Step 5 - Post-process Results
● Perform additional data cleanup

○ Upper-case all letters
○ Remove punctuation (except for colons)
○ Remove character accents

● Apply filtering rules to remove "invalid parcels", flag results:
○ with special characters
○ starting with a letter or non-digit
○ with ':P' pattern
○ with a colon, if a number is not present before the colon
○ longer than 13 characters
○ with 4 or more letters, if no colon is present
○ with 5 or more numbers in a row

● Remove duplicate rows
● Export final results into "good", "bad", and "all" spreadsheets

gis.utah.govgis.utah.gov

http://gis.utah.gov
http://gis.utah.gov


UDOT Project Tools
● OpenCV

○ Image manipulation
○ Circle detection
○ Cropping
○ Mosaicking

● Optical Character Recognition (OCR)
○ PyTesseract (original choice)
○ Google DocumentAI (better results)

● Pandas
○ Tabular data manipulation
○ Joins
○ String cleanup
○ Filtering rules

gis.utah.govgithub.com/agrc/udot-parcel-ml/

http://gis.utah.gov
https://github.com/agrc/udot-parcel-ml/


UDOT Results 
● Over 240,000 "good" parcels were extracted from the documents
● Data Accuracy

○ Reviewed 50 documents to compare CV results to human results
○ Two "outlier" PDFs with 44 and 48 pages - might skew results
○ Circle detection

■ Including outliers: CV detected 1039/1244 circles (83.52%)
■ Excluding outliers: CV detected 662/698 circles (94.84%)

○ Text comparison on 897 valid parcels
■ Average edit distance: 0.229
■ Average correct letter percentage (truth_len - edit_dist)/truth_len: 95.15%
■ Number of results that were perfect: 878 (88.96%)
■ Number of results with edit distance <= 1: 921 (93.31%)

gis.utah.gov

http://gis.utah.gov


Motivation - DHHS Cooling Towers
● Legionella bacteria can cause a serious type of 

pneumonia called Legionnaires' disease
● Legionella can grow/spread in large building 

water systems
○ Water tanks, HVAC, large/complex 

plumbing systems, cooling towers
● Cooling towers are concerning because they 

can release aerosolized water into the 
atmosphere
○ If Legionella is present, the aerosolized 

water can spread the bacteria over miles*

*CDC - Controlling Legionella in Cooling Towers CDC - Legionnaires' Fact Sheet

https://www.cdc.gov/legionella/wmp/control-toolkit/cooling-towers.html
https://www.cdc.gov/legionella/downloads/fs-legionnaires.pdf


Motivation - DHHS Cooling Towers
● Cooling towers can cause outbreaks of 

Legionnaires’ disease when they are not 
adequately maintained

● They are often investigated & located using 
aerial imagery during Legionnaires' outbreaks

● Cooling towers have distinctive features that 
make them identifiable

● Researchers and the CDC have used 
object-detection models to identify potential 
cooling towers in aerial imagery (TowerScout)

CDC - Procedures for Identifying Cooling TowersCDC - Photos of Cooling Towers

https://github.com/TowerScout/TowerScout
https://www.cdc.gov/legionella/health-depts/environmental-inv-resources/id-cooling-towers.html
https://www.cdc.gov/legionella/health-depts/environmental-inv-resources/cooling-tower-images.html


● Cooling towers can cause outbreaks of 
Legionnaires’ disease when they are not 
adequately maintained

● They are often investigated & located using 
aerial imagery during Legionnaires' outbreaks

● Cooling towers have distinctive features that 
make them identifiable

● Researchers and the CDC have used 
object-detection models to identify potential 
cooling towers in aerial imagery

CDC - Procedures for Identifying Cooling Towers

Motivation - DHHS Cooling Towers

CDC - Photos of Cooling Towers

This problem is 
solvable with 

computer vision!

https://www.cdc.gov/legionella/health-depts/environmental-inv-resources/id-cooling-towers.html
https://www.cdc.gov/legionella/health-depts/environmental-inv-resources/cooling-tower-images.html


DHHS Cooling Towers - Process Overview

gis.utah.govgis.utah.gov

● 1) Build Index & Footprint
● 2) Download Images
● 3) Detect & Locate Towers
● 4) Post-process results
● 5) Build Web Map

Build Index
Download 

Images

Detect & 
Locate 
Towers

Build Web 
Map

2
1 3

4/5 

http://gis.utah.gov
http://gis.utah.gov


Step 1 - Build Imagery Index & Footprint
● Discover Web Map Tile Services (WMTS) used for 

statewide imagery
● Must build imagery index at highest zoom level (20)
● Create point for upper left corner of each WMTS tile 

(row, col)
○ Calculate latitude/longitude based on row/col values
○ 275,000,000 tiles cover the state of Utah!

● Create processing footprint to select a subset of all 
image tiles

○ Buffer census places by 800m
○ Buffer large buildings (>5k sq ft) by 800m

● Select WMTS indices of tiles in processing footprint
○ Load tile index and footprint into Google BigQuery
○ Run Spatial SQL query to select tiles to process (~6%)
○ (data is waaaayyy too big for desktop GIS) gis.utah.govgis.utah.gov

Build 
Index

Create 
Footprint

https://gis.utah.gov/discover/
http://gis.utah.gov
http://gis.utah.gov


Step 1 - Build Imagery Index & Footprint
● Discover Web Map Tile Services (WMTS) used for 

statewide imagery
● Must build imagery index at highest zoom level (20)
● Create point for upper left corner of each WMTS tile 

(row, col)
○ Calculate latitude/longitude based on row/col values
○ 275,000,000 tiles cover the state of Utah!

● Create processing footprint to select a subset of all 
image tiles

○ Buffer census places by 800m
○ Buffer large buildings (>5k sq ft) by 800m

● Select WMTS indices of tiles in processing footprint
○ Load tile index and footprint into Google BigQuery
○ Run Spatial SQL query to select tiles to process (~6%)
○ (data is waaaayyy too big for desktop GIS) gis.utah.govgis.utah.gov

Build 
Index

Create 
Footprint

https://gis.utah.gov/discover/
http://gis.utah.gov
http://gis.utah.gov


Step 2 - Download Images
● Iterate through tile indices within footprint

○ Download primary tile and 3 neighboring tiles with HTTPS GET requests:
○ https://discover.agrc.utah.gov/login/path/{quad-word}/tiles/15cm_hexagon_utah/20/{col}/{row}

● Build mosaic image
○ Each WMTS tile is 256x256 pixels ◦     Model input performs best on 512x512 images

gis.utah.govgis.utah.gov

198263, 394029 198264, 394029

198263, 394030 198264, 394030

{col}, {row}

http://gis.utah.gov
http://gis.utah.gov


Step 3 - Detect & Locate Towers
● Run PyTorch model on each mosaic

○ Pre-trained "TowerScout" model, provided by CDC
○ YOLOv5 backbone

● Get results as a dataframe

*TowerScout created by Karen Wong, Jia Lu, Gunnar Mein, and Thaddeus Segura, licensed under CC-BY-NC-SA-4.0

Detect 
Towers

https://github.com/TowerScout/TowerScout
https://creativecommons.org/licenses/by-nc-sa/4.0/


Step 3 - Detect & Locate Towers
● Calculate X/Y coordinates of tower centroid

○ PyTorch model provides tower location bounding box in pixels from 
upper-left corner

○ Centroid is calculated from xmin, xmax, ymin, ymax values
○ Able to convert pixels into geographic space because we know:

■ 1) coordinates of the tile's upper-left corner
■ 2) pixel size at WMTS zoom level 20 (0.1492910708688 meters)

                                                                                                             

● Upload results to BigQuery

Calculate 
X/Y

y

x



Step 4 - Post-process Results
● Manually validate detected cooling towers
● Enrich data with attributes from other 

statewide datasets
○ Nearby address
○ County
○ City
○ Zip Code
○ Small Health Statistical Area

gis.utah.govgis.utah.gov

Step 5 - Build Web Map
● Create hosted feature layer of cooling tower locations
● Build a web map for DHHS users
● Add other relevant, health-related layers and tools

                                                                                                             

                                                                                                             

http://gis.utah.gov
http://gis.utah.gov


DHHS Tools
● Mercantile - WMTS tile index to lat/lon
● Polars - large dataframe creation
● Requests - http requests and downloads
● Pyproj - coordinate conversion
● PyTorch - object detection model
● Google Cloud Platform

○ BigQuery - massive tabular data, querying, spatial SQL
○ Cloud Run - cloud computing

gis.utah.govgithub.com/agrc/dhhs-cooling-towers

http://gis.utah.gov
http://github.com/agrc/dhhs-cooling-towers


DHHS Project Results
● To be determined…
● Most of the code is written, but the processing is in-work
● Check back later for an update! (UGRC blog post)

gis.utah.gov

http://gis.utah.gov


Final words

gis.utah.gov

● Computer Vision tools can 
help unlock that data

● Cloud computing can reduce 
processing time by orders of 
magnitude

● UDOT parcel detection and 
DHHS cooling towers 
projects highlight these 
possibilities

                       

● A lot of useful data and information can be locked away in documents and 
imagery

http://gis.utah.gov


Erik Neemann
email: eneemann@utah.gov

twitter: @Erik_UGRC

Questions?

gis.utah.govgis.utah.gov/presentations

mailto:eneemann@utah.gov
https://twitter.com/Erik_UGRC
http://gis.utah.gov
http://gis.utah.gov/presentations

