South Salt Lake Millcreek **Next-Generation 911 (NG911)** in Utah: Current Status and 1 **GIS Update** Utah Geospatial U Resource Center Location matters **Erik Neemann** 14 October 2021

Snyderville

Overview

Murray

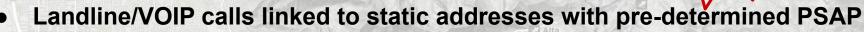
Park City

- Next-Generation 911 (NG911)
- Background
- Utah NG911 Project
 - Current Status
 - Next Steps
- UGRC Data Process
 - **Challenges & Technical Solutions**

Utah Geospatial Resource Center

Utah Geospatial Resource Center

- State of Utah's GIS office
- Established in 1989 via Utah Code 63F-1-506
- Department of Government Operations (DGO)
 - Division of Technology Services (DTS)
- State Geographic Information Database (SGID)
- Discover Imagery & Basemap services
- TURN GPS Reference Network
- GIS & Web development
- Funded through combination of state funds and



"Encourage and facilitate the effective use of geospatial information and technology for Utah"

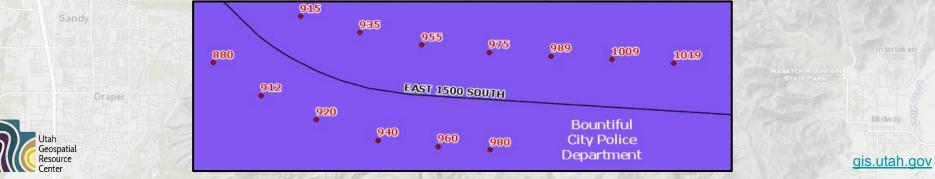
GPS real-time precision turnaps.utah.gov **Utah's State Geographic** Information Database established 1991 Iscove.

Current/Old 911 System (E911)

- Analog system reliant on data tables to route 911 calls to appropriate Public Safety Answering Point (PSAP)
 - Master Street Address Guide (MSAG) streets
 - Maintained by PSAPs
 - Automatic Location Identification (ALI) addresses
 - Maintained by telecom

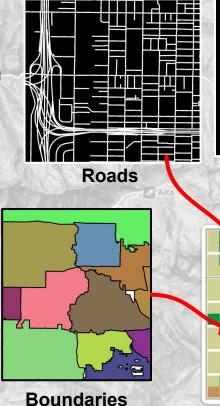
• Wireless calls routed based on cell tower sector, then lat/lon information (typical accuracy within ~30-500 m

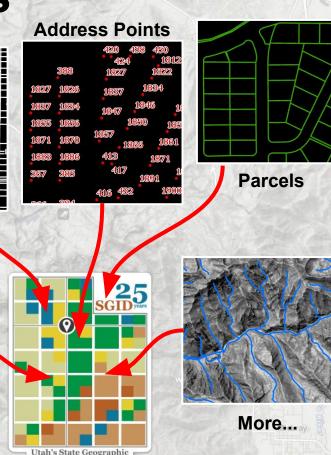
Sandy	1	А	В	C	D	E	F	G	H		J	K	L
	1	DIR	STREET	LOW	HIGH	COMM	ST	O_E	ESN	DATE MODIFIED	EXCHANGE	ENTITY	MSAG
MSAG	37	E	500 SOUTH	1	600	NEPHI	UT	В	430	4/29/1996		29	JUABUT
	38	E	570 SOUTH	400	600	NEPHI	UT	В	430	4/29/1996		29	JUABUT
Table	39	E	600 NORTH	1	900	NEPHI	UT	В	430	4/29/1996		29	JUABUT
王朝王武帝	40	E	600 SOUTH	1	300	NEPHI	UT	В	430	4/29/1996		29	JUABUT
是因为国际力	41	E	635 SOUTH	498	498	NEPHI	UT	В	430	4/29/1996		29	JUABUT
spatial ource	42	E	700 NORTH	1	950	NEPHI	UT	В	430	4/29/1996		29	JUABUT


Table-driven

Next Generation 911 (NG911)

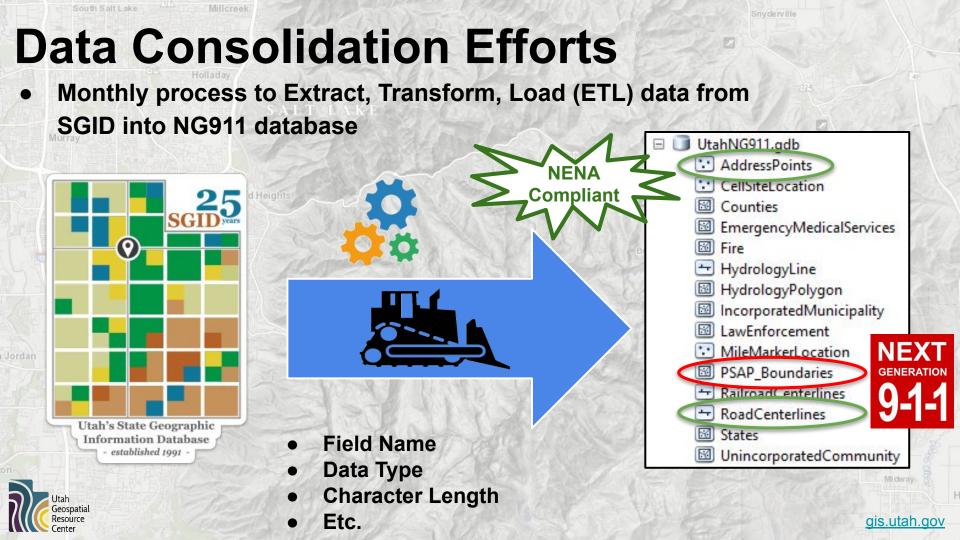
Calls will be routed to PSAPs based GIS data depending on caller location


GIS-driven


- PSAP boundaries
 - Road centerlines
 - Address points
- Dynamic routing possible by changing PSAP boundaries during emergencies, downtime, or high call volume
- Internet Protocol (IP)-based communications system with upgraded call handling equipment
 - Enables additional data streams (text, photos, video, sensor, IoT, etc.)

Data Consolidation Efforts

- Aggregate data from counties into statewide database (SGID)
 - Frequency based on population
 - Roads, Address Points, Parcels
- Road centerline editing database pushed to production database monthly
 - Schema parallels NG911, but isn't exact
- Other statewide data compiled and updated as needed



gis.utah.gov

Information Database

established 1991

Utah NG911 Project Stakeholders and Roles

- **Utah Communications Authority (UCA) 911 Division**
 - Orchestrate NG911 transition
 - Oversee the entire process contracts, equipment, training, data, etc.
- Motorola primary contractor for NG911 and core services
 - Build NG911 infrastructure
 - Provide NG911 software, routers, comm equipment, etc.
- UGRC

0

Itah

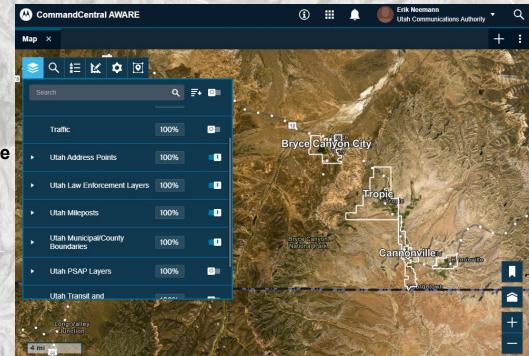
- Provide GIS Data (geodatabases, web services, web maps, etc.)
 Work with UCA and Motorola to facilitate NG911 transition
- Work with UCA and Motorola to facilitate NG911 transition
- Quality-check GIS data, & work w/ stewards to clean/update data PSAPs
 - Work with other stakeholders during PSAP's NG911 transition
 - Install equipment/software, train employees, provide data feedback

Utah NG911 Project: Current Status

Infrastructure and software

Murray

0


Utah Geospatial Resource

ESInet

- IP-based communications
 backbone
- PSAP call-handling equipment
 - Hardware upgrades
 - Mapping Interface changes
 - Motorola CommandCentral Aware

NG911 Core Services

- GIS-enabled routing and call services
 - Vesta Router
 - NG911 GIS Database from UGRC

Utah NG911 Project: Current Status

Data Creation

- Formalize official <u>PSAP boundaries</u>
- Compile civic location data
 - Modele Address Points (APs)
 - Road Centerlines (RCLs)
- Build emergency service boundaries
 - ∘ <u>Law</u> √
 - Emergency Medical Services (EMS) ✓
 - Fire (in-work)

Utah NG911 Project: Current Status

Data Validation & Cleanup

- Quality-control each GIS dataset (ongoing)
- Compare ALI/MSAG with GIS data (upcoming)
 - Verify address point exists for each ALI entry
 - MSAG streets represented in GIS format
 - Vendor tools used for these comparisons

ESN	HOUSE	SUFF	DIR	STREET	COMMUNITY	TELCO
525	161		Ν	300 WEST	MILFORD	SEU
525	155		N	300 WEST	MILFORD	SEU
525	137		N	300 WEST	MILFORD	SEU
525	113		N	300 WEST	MILFORD	SEU

ALI Table

161

155

137

113

NOR TH 300 WES

MILFORD

Utah NG911 Project: Current Status

161

NOR TH 300 WEST

MILFORD

Data Validation & Cleanup

Resource

- Quality-control each GIS dataset (ongoing)
- Compare ALI/MSAG with GIS data (upcoming)
 - Verify address point exists for each ALI entry MOvale
 - **MSAG streets represented in GIS format** 0
 - Vendor tools used for these comparisons 0

Utah NG911 Data Processes

- Road Centerlines and Address Points
 - Aggregated SGID data ETL'd into the NG911 schema (C# script)
 - Mapping fields from SGID schema in to NG911 fields
 - Converting data to a different representation
 - Zip codes into MSAG community names
 - County FIPS codes into county names
 - Project into WGS84
- PSAP Boundaries
 - Python script builds boundaries based on SGID data
 - Emergency Service Boundaries
 - Jo Law Enforcement
 - Python script builds boundaries based on SGID data
 - Emergency Medical Services (EMS)
 - Boundaries built manually from Bureau of EMS descriptions
 - Fire Response
 - Boundaries built manually from state tax entities and piecing together dispatch center datasets (CAD)

) internet

Utah NG911 Data: Law Boundaries

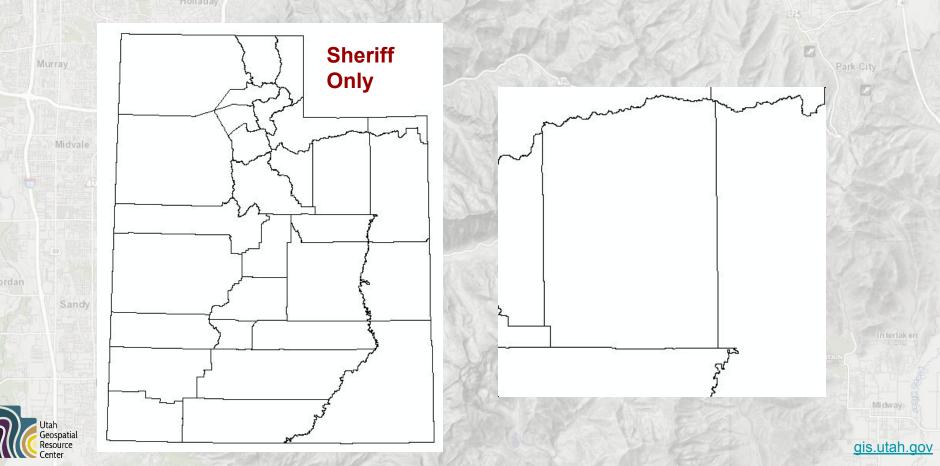
Built with python script

- Fast, repeatable, and decreases maintenance
- Minimizes gaps/overlaps with ArcPy Erase/Append workflow

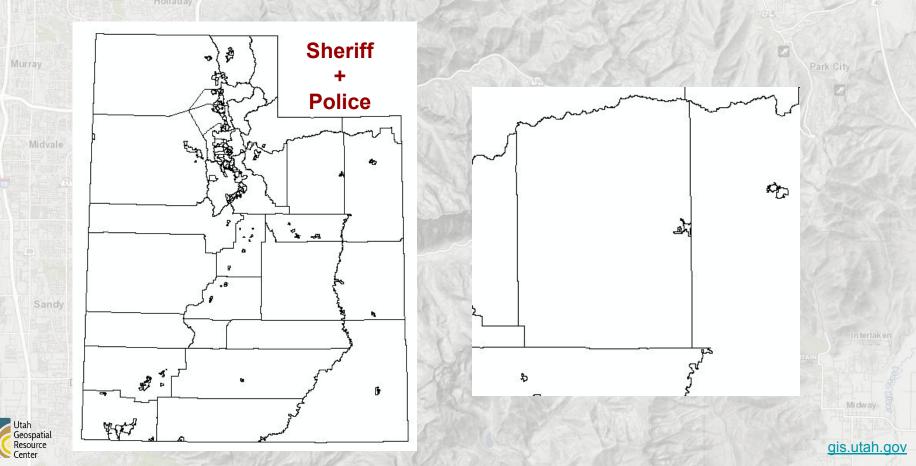
Basic logic

- Generate sheriff's office jurisdictions from county boundaries
- Generate police department jurisdictions from municipal boundaries
 - Only build boundaries for municipalities that have their own police department (read from text file)
 - Merge boundaries of municipalities that share a police department
- Insert police department boundaries into sheriff's office boundaries to create a combined boundaries layer
- Insert unique jurisdiction boundaries into combined boundaries layer

ais.utah.gov

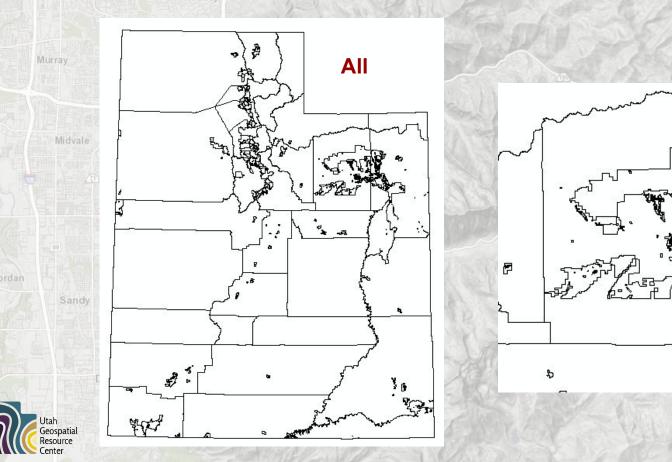

Tribal police, Hill AFB, etc.

Munis with PDs.txt - Notepad File Edit Format View Help AT TA AMERICAN FORK AURORA BI ANDING BOUNTIFUL BRIAN HEAD BRIGHAM CITY CEDAR CITY CENTERFIELD CENTERVILLE **CLEARETELD** CLINTON COTTONWOOD HEIGHTS DRAPFR EAST CARBON ENOCH ENTERPRISE EPHRAIM


Snyderville

Utah NG911 Data: Law Boundaries

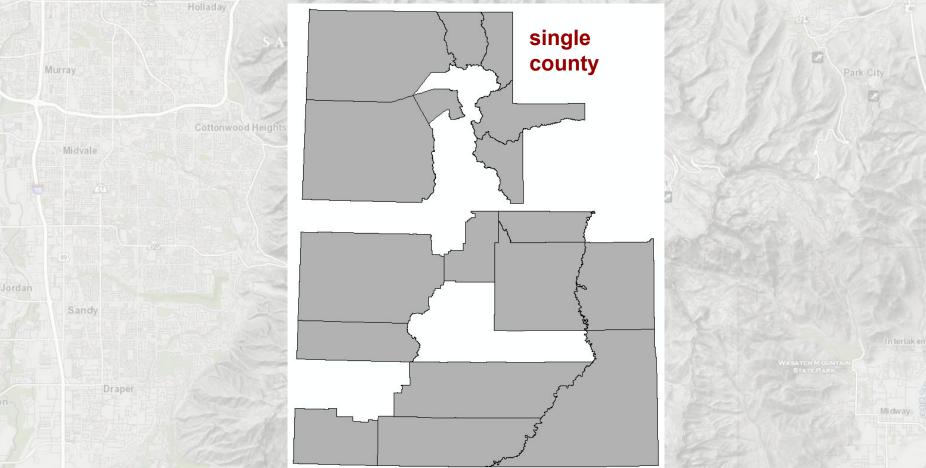
Snyderville


Utah NG911 Data: Law Boundaries

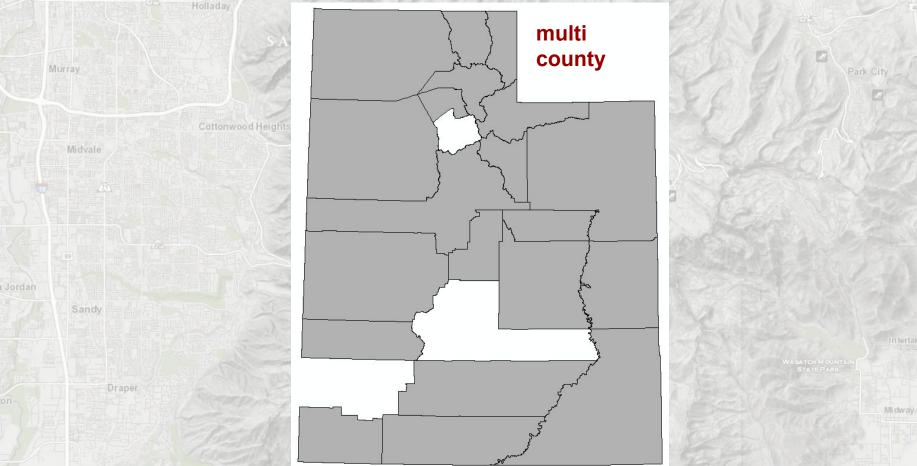
Snyderville

00

Utah NG911 Data: Law Boundaries

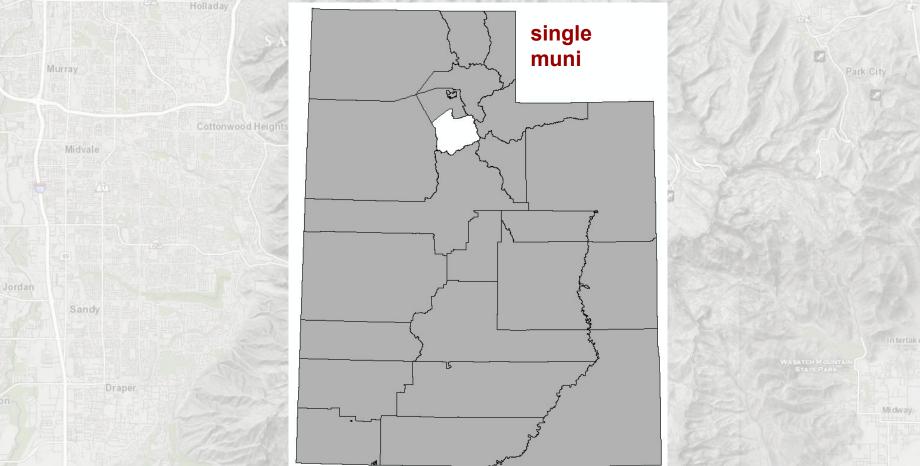

Utah NG911 Data: PSAP Boundaries

- Basic Python script logic
 - Similar to law boundaries, but a little more complicated
 - Each PSAP may be:
 - single county
 - multi-county
 - a combination of cities and counties (mixed)
 - single city
 - multi-city
 - unique
 - PSAP "type" and participating entities are read from csv, placed in dictionaries
 - Munis and counties appended into the same layer
 - Dissolve performed on PSAP field to create intermediate layer
 - ArcPy Erase/Append workflow combines intermediate layers together


	A	В	C	D
1	PSAP	Туре	Counties	Munis
2	Beaver County Sheriff's Office	single county	BEAVER	
	Bountiful City Police Department	multi muni		BOUNTIFUL, WEST BOUNTIFUL, NORTH SALT LAKE, WOODS CROSS, CENTERVILLE
4	Box Elder Communications Center/State DPS	single county	BOX ELDER	[2] MARKERS, P. R. BERTHER, M. R. BERTHER, A. S. SAN, MILLING CONTRACT, AND DESCRIPTION (1998).
5	Cedar Communications Center/State DPS	mixed	IRON	NEW HARMONY
6	Central Utah 911	multi county	JUAB, UTAH	
7	Clearfield City Police Department	single muni		CLEARFIELD

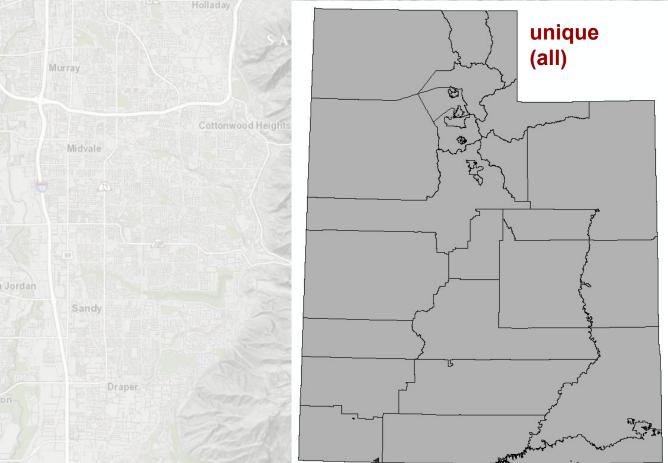
Jordan

Snyderville


Snyderville

Snyderville

Snyderville



Snyderville

Snyderville

Utah NG911 Data: PSAP Boundaries

SATCH MOUNTAIN STATE PARK

UGRC Data, Challenges, & Solutions

- Statewide data is big data this creates a problem for scaling up quality checks
 - 1.3+ million address points
 - 400,000+ road centerlines

Robust quality checks available in vendor tools, but

they seem built for smaller, single-PSAP projects

- Quality checks run interactively in an ArcMap GUI
 - Dozens of check can be run at once (APs, RCLs, polygon topology)
- Tools abort after reaching error limit (1000)
- Would take months of non-stop processing to QC statewide data

Address Point 400 - Empty (Null) Geometry - (Database Selection Only) 401 - Geometry Overlap 402 - AP Out of Sequence 403 - AP to Polygon Attribute Mismatch 404 - AP to RCL Attribute Mismatch 405 - Coincident with RCL 406 - Not In Polygon 407 - In Multiple Polygons 408 - Parity Mismatch 409 - No USPS Standard Abbreviation Match 410 - Duplicate Address Attributes - 499 - Required Field Values Missing Road Centerline 500 - Empty (Null) Geometry - (Database Selection Only) 501 - Geometry Overlap 502 - Address Range Gap 503 - Address Range Overlap 504 - Address Range Zero 505 - Cutback Angle 506 - Not In Polygon 507 - Low vs. High Range 508 - Parity Inconsistency 509 - Polygon Boundary Split 510 - RCL Disconnect 511 - RCL Intersection Split 512 - RCL Pointing In Wrong Direction 513 - RCL to Polygon Attribute Mismatch 514 - RCL to RCL Attribute Mismatch 515 - Short Segment 516 - Address Range Out Of Sequence 517 - No USPS Standard Abbreviation Match 518 - Duplicate Address Attributes 519 - Multipart Geometry 520 - True Curve Geometry 599 - Required Field Values Missing Polygon 600 - Empty (Null) Geometry - (Database Selection Only) 601 - Geometry Overlap 602 - Geometry Gap 603 - No Coincident Vertices 699 - Required Field Values Missing

South Salt Lake

UGRC Data, Challenges, & Solutions

- UGRC has needed to get creative to attack such a large data volume
 - Python!
- Focus on issues that could most directly affect
- call-routing
 - Polygon geometry gaps and overlaps
 - Road centerline range overlaps
 - Address point duplicates
 - Scripts flag identified errors
 - Some issues will be corrected by UGRC
 - Other issues will be provided as feedback to data stewards at the local level
 - Scripts complete in a few minutes!

livita
Address Point
400 - Empty (Null) Geometry - (Database Selection Only)
500 - Empty (Null) Geometry - (Database Selection Only)
501 - Geometry Overlap
502 - Address Range Gap
506 - Not In Polygon
∑ 507 - Low vs. High Range
511 - RCL Intersection Split
512 - RCL Pointing In Wrong Direction
∑514 - RCL to RCL Attribute Mismatch
⊡ 515 - Short Segment
…⊻518 - Duplicate Address Attributes
✓ 519 - Multipart Geometry
520 - True Curve Geometry
∃- ✓ Polygon
600 - Empty (Null) Geometry - (Database Selection Only)
601 - Geometry Overlap
602 - Geometry Gap

Python scripts used to flag and (in some cases) fix issues

- Address range low vs. high problem
- Address range parity inconsistency
- Mandatory fields missing data
- RCL pointing wrong direction

In Python, calculate angle and perform direction check:

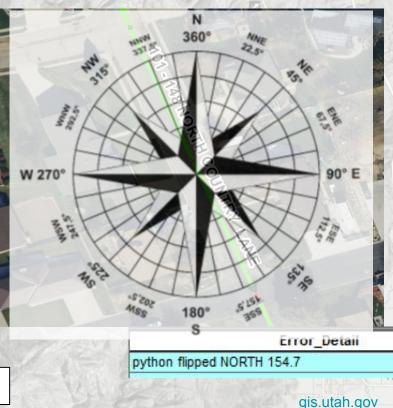
if predir == 'N' and (angle > 100 and angle < 260):
is_reversed = True
<pre>elif predir == 'S' and (angle > 280 or angle < 80):</pre>
is_reversed = True
elif predir == 'E' and (angle > 190 and angle < 350):
<pre>is_reversed = True</pre>
<pre>elif predir == 'W' and (angle > 10 and angle < 170):</pre>
is_reversed = True

python flipped NORTH 154.7

Utah Geospatial Resource Center

If segment is reversed, reorder the segment's vertices

- Python scripts used to flag and (in some cases) fix issues
 - Address range low vs. high problem
 - Address range parity inconsistency
 - Mandatory fields missing data 1
 - RCL pointing wrong direction


In Python, calculate angle and perform direction check:

if predir == 'N' and (angle > 100 and angle < 260):
is_reversed = True
<pre>elif predir == 'S' and (angle > 280 or angle < 80):</pre>
<pre>is_reversed = True</pre>
elif predir == $'E'$ and (angle > 190 and angle < 350):
is_reversed = True
elif predir == 'W' and (angle > 10 and angle < 170):
is_reversed = True

South Salt Lake

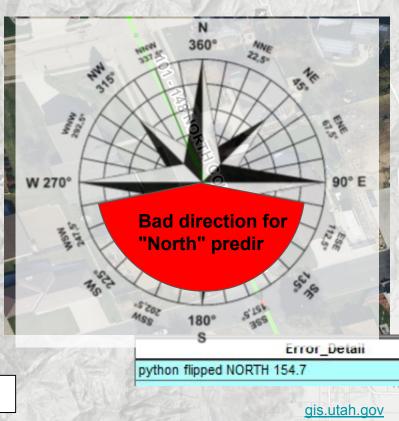
If segment is reversed, reorder the segment's vertices

- Python scripts used to flag and (in some cases) fix issues
 - Address range low vs. high problem
 - Address range parity inconsistency
 - Mandatory fields missing data 1
 - RCL pointing wrong direction

In Python, calculate angle and perform direction check:

South Salt Lake

Murray


Itah

Geospatial

Resource

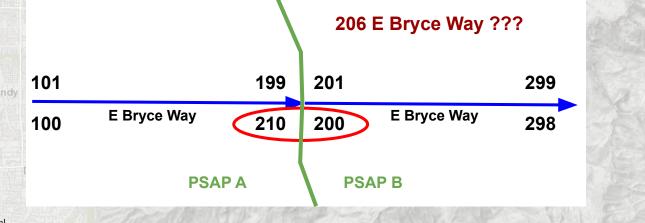
if predir == 'N' and (angle > 100 and angle < 260):	
is_reversed = True	
elif predir == 'S' and (angle > 280 or angle < 80):	
is_reversed = True	
elif predir == 'E' and (angle > 190 and angle < 350):
is_reversed = True	
elif predir == 'W' and (angle > 10 and angle < 170)	:
is_reversed = True	
<pre>is_reversed = True elif predir == 'W' and (angle > 10 and angle < 170)</pre>	

Python scripts used to flag and (in some cases) fix issues

- Address range low vs. high problem
- Address range parity inconsistency
- Mandatory fields missing data
- RCL pointing wrong direction

In Python, calculate angle and perform direction check:

if predir == 'N' and (angle > 100 and angle < 260):
is_reversed = True
<pre>elif predir == 'S' and (angle > 280 or angle < 80):</pre>
is_reversed = True
elif predir == 'E' and (angle > 190 and angle < 350):
<pre>is_reversed = True</pre>
<pre>elif predir == 'W' and (angle > 10 and angle < 170):</pre>
is_reversed = True


python flipped NORTH 154.7

Utah Geospatial Resource Center

If segment is reversed, reorder the segment's vertices

Utah NG911 Data QC: Road Centerlines

- Address range overlap problem
 - Adjacent segments (or distant ones) overlap
 - Ambiguous address locations
 - Where does the call get routed?
 - Working on possible Python solution or brute force approach with vendor tools

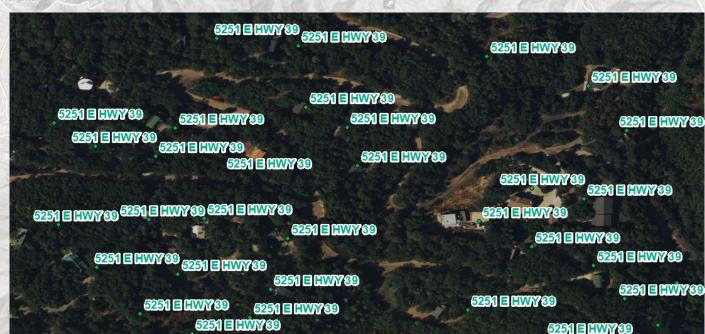
gis.utah.gov

(and the second

South Salt Lake

Utah NG911 Data QC: Address Points

- Python scripts used to flag issues
 - Attribute duplicates
 - Mandatory fields that are missing data
 - Includes: [None, 'none', 'null', '', ' ', ' ']


Cottonwood Heights

Midvale

Draper

Utah NG911 Data QC: Boundaries

Utah Geospatial Resource Center

- Gaps and overlaps are primary concerns
 - Can lead to call-routing problems
- Vendor tools and Geodatabase topology used to flag gaps and overlaps
 - Building boundaries from Python scripts help avoid gaps/overlaps
 - Manually built polygon layers more prone to error
 - Snapping problems
 - Aggregating from multiple datasets/projections

Utah NG911 Data QC: ALI and MSAG

- Motorola has been validating MSAG data
 - Worked with PSAPs to make corrections
- Vendor tools will compare ALI/MSAG to GIS data
 - Waiting for full/final data to be loaded in system
- Previous UGRC ALI geocoding efforts
 - ALI snapshot provided by CenturyLink
 - Hideous text file that was cleaned up with a Python script
 - Valid addresses were geocoded against UGRC web API (158,321)
 - score > 90: very good geocodes
 - 134,784 (95.3%)
 - score 70-89: okay geocodes
 - 635 (0.4%)
 - scored = 0: not located

6,864 (4.3%)

Questions?

Sandy

H

Utah Geospatial Resource Center

Location matters

Erik Neemann (eneemann@utah.gov)

STATE PARK